Abstract
In this study, hydroxyethyl cellulose (HEC) and polyvinyl alcohol (PVA) as the framework, borax as the cross-linker, and biomass lignin from pulping black liquors and biorefinery as the plasticizer were used to synthesize the lignin-based HEC-PVA (LCP) self-healing conductive hydrogel with highly stretchable and thermosensitive properties by the one-step fabrication method. Compared with the PVA hydrogel, the maximum storage modulus and the elongation rate was increased by 7 times and 20 times, respectively. Uniformly distributed lignin could increase the mobility and distance of polymer molecular chains, therefore improve the viscoelasticity and stretchability of the LCP self-healing hydrogel. The LCP hydrogel could recover to the original state in 12 s after 10000% shear strain for 4 cycles. The LCP hydrogel also presented good thermosensitivity and electrical conductivity, and were very promising for applications in the fields of 3D printing and wearable electronic devices, that broadened the efficient utilization of biorefinery lignin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.