Abstract
AbstractSoft thermoplastic elastomers (sTPE) and specifically styrenic block copolymers (SBC) are making rapid progress in the prototyping and mass production of microfluidic chips. However, these new materials lack guidelines and protocols for chips fabrication, curbing their widespread applications compared to polydimethylsiloxane. In this work, the prototyping potential of a commercially available SBC material, Flexdym, for continuous flow applications is explored. This SBC material exhibits both reversible and permanent self‐adhesion depending on the time and bonding temperature, allowing for rapid and adaptive chip fabrication. Replicates are embossed in 2 min, assembled and sealed in 10 min. Under continuous flow, stud interfaces fabricated with this method can withstand 1 bar with reversible bonding and up to 3 bar after permanent bonding. The integration of an acoustic transducer in an SBC chip to induce acoustic streaming enables rapid mixing and local enrichment of polystyrene microparticles up to 8× the injected concentration. The reversible bonding feature of SBC chips allows to culture endothelial cells in open channels and then close and perfuse through channel to stain the cell. Our finding suggests that TPE‐based materials offer numerous possibilities for prototyping microfluidic chips for analytical and biomedical applications when working with continuous flow at high pressure is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.