Abstract

Carbon is a highly adaptable family of materials and is one of the most chemically stable materials known, providing a remarkable platform for the development of tunable molecular interfaces. Herein, we report a two-step process for the electrochemical hydrogenation of glassy carbon followed by either chemical or electrochemical chlorination to provide a highly reactive surface for further functionalization. The carbon surface at each stage of the process is characterized by AFM, SEM, Raman, attenuated total reflectance (ATR) FTIR, X-ray photoelectron spectroscopy (XPS), and electroanalytical techniques. Electrochemical chlorination of hydrogen-terminated surfaces is achieved in just 5 min at room temperature with hydrochloric acid, and chemical chlorination is performed with phosphorus pentachloride at 50 °C over a three-hour period. A more controlled and uniform surface is obtained using the electrochemical approach, as chemical chlorination is observed to damage the glassy carbon surface. A ferrocene-labeled alkylthiol is used as a model system to demonstrate the genericity and potential application of the highly reactive chlorinated surface formed, and the methodology is optimized. This process is then applied to thiolated DNA, and the functionality of the immobilized DNA probe is demonstrated. XPS reveals the covalent bond formed to be a C-S bond. The thermal stability of the thiolated molecules anchored on the glassy carbon is evaluated, and is found to be far superior to that on gold surfaces. This is the first report on the electrochemical hydrogenation and electrochemical chlorination of a glassy carbon surface, and this facile process can be applied to the highly stable functionalization of carbon surfaces with a plethora of diverse molecules, finding widespread applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.