Abstract
It is a challenge to deliver therapeutics exclusively to cancer cells, while sparing the normal cells. However, pH-sensitive delivery systems have proved to be highly efficient in fulfilling this task due to their ability to provide on-demand and selective release of drug at acidic tumor sites. As a proof of concept, here pH responsive drug delivery system based on mesoporous core shell nanoparticles (NPs) surrounded with poly acrylic acid (PAA) layers were prepared employing a facile synthesis strategy. Bicalutamide (BIC) was encased into surface functionalized MCM-41 nanoparticles via electrostatic interactions. The synthesized NPs were characterized by nitrogen adsorption and desorption isotherms, SEM-EDS, TEM, LXRD, and WXRD. In vitro release studies demonstrated that BIC-MSN-PAA NPs exhibited a higher release in the acidic media which varied inversely with the increase in pH. Further, the results of cell cytotoxicity assay were evident that BICMSNs exhibited more potent killing of both PC-3 and LNCaP cells than free BIC. PAA-MSNs also exhibited an enhanced cellular uptake and prolonged circulation time in vivo. The results are suggestive of the fact that PAA functionalized MSNs can serve as an effective pH-responsive template and hold a great potential ahead in controlled release and effective cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.