Abstract

This work reports the rational design of a composite material by growing FeCu-MOF-919 on the surface of layered Ti3C2Tx MXene. The introduction of Ti3C2Tx MXene simultaneously weakens the aggregation of FeCu-MOF-919 and Ti3C2Tx MXene, which increases the electrochemical reaction active site of the composite material and improves the electrochemical activity. Interestingly, the FeCu-MOF-919/Ti3C2Tx based sensors were used to detect resorcinol (RS) with a wide linear range (0.5–152.5 μM), excellent sensitivity (0.23 μA μM−1 cm−2), low limit of detection (LOD = 0.08 μM) and outstanding stability. Meanwhile, the sensor shows high repeatability of 1.07 % RSD, reproducibility of 1.47 % RSD and anti-interference performance. What's more, the sensor can be successfully used to detect RS in tap water with good recoveries (96.25–103.37 %, RSD ≤2.18 %), demonstrating that the FeCu-MOF-919/Ti3C2Tx exhibits significant potential as an advanced sensing apparatus for the surveillance of RS in the natural environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call