Abstract

A novel nano-formulations of biocompatible, biodegradable and thermo-responsive graphene quantum dots (GQDs) loaded dextran/poly(N-isopropylacrylamide) (Dex/PNIPAM) copolymeric matrix was synthesized and analyzed the materials characterization, sustained drug delivery system, tissue feasibility in the tissue implantation site. This research report was aimed to grafting and functionalizing thermo-responsive (Dex/PNIPAM) copolymeric composite with presence of graphene quantum dots to achieve thermal responsive drug delivery (TrDD) with no harm effect in the implantation site. The synthesized GQD by using ionic liquid were evaluated by spectroscopic (DLS, PL, XRD and Raman spectroscopy) and Transmission electron microscopic analysis (TEM). The ultra-small GQDs loaded Dex/PNIPAM and was appeared to be asymmetric and open uniform porous structure, which can be significantly favorable for cell uptake and greatly influenced to be an effective drug carrier into the cellular compartment with good fluid flow. The PNIPAM polymeric composite were exhibited sustained and enhanced drug release percentages with increasing temperature at above low critical solution temperature (LCST) is 39 °C comparable to the cumulative drug release profile of below LCST (32 °C), which demonstrated that thermo-responsive polymer was played a significant role in the delivery system. The treated group of GQDs-Dex/PNIPAM was observed that no inflammation and shows noteworthy stromal cell infiltration, demonstrating that the synthesized drug carriers did not harm to the nerves and tissues and only was responsible for the pain management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call