Abstract

Solid-state hydrogen storage is a promising roadmap for the safe and efficient utilization of hydrogen energy due to its moderate operating environment and high hydrogen storage density. However, as a representative solid-state hydrogen storage material, magnesium hydride (MgH2) is significantly limited in the commercial application due to its sluggish kinetics in the dehydrogenation process. Single-atom catalysts are a promising solution to this dilemma. However, the promising graphene-based single-atom catalysts are not yet sufficient to meet the dehydrogenation needs in engineering. To further address this dilemma, we designed a novel γ-graphyne based single-atom catalysts including eight 3d transition metals for promoting the dehydrogenation process of MgH2. Through using spin-polarized density functional theory calculations, we found that the energy barrier for MgH2 dehydrogenation has been significantly reduced even to 0.70 eV, which is far lower than the current graphene-based single-atom catalyst. In detail, the migration trajectory of hydrogen atom in the dehydrogenation process has been observed and confirmed using the ab initio molecular dynamics simulations. To investigate the intrinsic origin for its high catalytic activity of single-atom catalyst, we analyze the HMg bond activation mechanism through the electron localization function, charge density difference and crystal orbital Hamiltonian population. Finally, we found the relationship between energy barrier with electronic structure of single-atom catalyst, such as electrostatic potential and system electronegativity. This work can not only provide new ideas for the optimize of dehydrogenation catalyst, but also lay a theoretical foundation for the design of novel energy storage material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call