Abstract

Tailored synthesis of heterostructures for low temperature (sub 200 °C) CO2 sensing continues to be a challenging task. The present study demonstrates CO2 sensing characteristics of CaO-ZnO heterostructures achieved by zinc hydroxide carbonate (Zn5(CO3)2(OH)6) conversion to ZnO using Ca(OH)2 at 50 °C. Control samples namely, Zn5(CO3)2(OH)6, Ca(OH)2, ZnO, and CaO integrated microsensors exhibited low sensitivity towards CO2 gas. However, CaO-ZnO heterostructures demonstrated significant sensitivity (26 to 91%) at 150 °C for gas concentration ranging from 100 to 10000 ppm, respectively. In this study, zinc hydroxide carbonate sensitized with 25 wt% Ca(OH)2 to form CaO-ZnO heterostructures (25CaZMS) displayed a promising sensitivity (77%) and selectivity (98%) towards 500 ppm CO2 gas. Moreover, the selectivity studies were conducted in the presence of 10 commonly found gases and their sensing performance was compared against CO2 gas in dry and humid conditions. The developed CaO-ZnO sensor exhibited faster kinetics in comparison to the control samples. Improved sensing performance observed here is attributed to the low-temperature synthesis route which resulted in a large number of active pores and high surface area morphology. Additionally, the high CO2 adsorption capacity of CaO combined with compatible n-type semiconductors in forming highly dynamic nano-interfaced heterostructure is a promising step towards developing a precise CO2 gas microsensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.