Abstract

Z-scheme anatase/rutile TiO2/g-C3N4 hybrids (denoted as LTARCN-x, x represents calcination temperature) were designed and synthesized by growing TiO2 nanorods on the surface of g-C3N4 utilizing impregnation-calcination method. Furthermore, through the etched effect of hydrochloric acid and calcination treatment, the as-prepared LTARCN-x possessed abundant pore structure and larger surface area, and the surface area of LTARCN-425 was 8.5 times than that of bulk g-C3N4. Meanwhile, the g-C3N4 would play a role of carrier to prevent from the aggregation of TiO2 nanorods. In addition, under visible light irradiation, the Z-scheme heterostructure would be constructed between the rutile TiO2 nanorod and g-C3N4 nanosheet, respectively. The optimized photocatalyst LTARCN-425 exhibited a preferable activity, the photocatalytic hydrogen production rate of LTARCN-425 was about 1031 μmol g−1 h−1, and it was about 6.3 and 13.6 times than that of g-C3N4 and TiO2, respectively. Moreover, the photocatalytic mechanism of the hydrogen production was studied intensively via designing fluorescent probe, Pt and PbO2 deposition experiment, and the characterizations of EPR, TEM, HRTEM and XPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.