Abstract

α-hemolysin (Hla), a toxin secreted by Staphylococcus aureus (S. aureus), has been proved to be involved in the occurrence and aggravation of food poisoning. Hence, it is quite essential to establish its rapid detection methods to guarantee food safety. Sandwich ELISA based on nanobody is well known to be viable for toxins, but there is absence of nanobody against Hla, let alone a pair for it. Therefore, in this paper, we screened specific nanobodies by bio-panning and obtained the optimal nanobody pair for sandwich ELISA firstly. Then, RANbody, a novel nanobody owning both recognition and catalytic capability, is generated in a single step and at low cost through molecular recombination technology. Subsequently, sandwich ELISA was developed to detect Hla based on the nanobody and RANbody, that not only eliminated the use of secondary antibodies and animal-derived antibody, but also reduced detection time and cost, compared with traditional sandwich ELISA. Lastly, the performance has been evaluated, especially for specificity which showed no response to other hemolysins and a low limit of detection of 10 ng/mL. Besides, the proposed sandwich ELISA exhibits favorable feasibility and was successfully employed for the detection of Hla in milk and pork samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call