Abstract

With the gradually increasing demand for solving the environmental pollution problem and energy crisis, efficient photocatalysts with superior charge carrier separation and transfer ability have attracted extensive research attention. Herein, n-type CdS-decorated p-Cu2O/n-ZnO nanorod arrays (CdS/Cu2O/ZnO NRAs), integrating the merits of both highly ordered structure and synergistic effect derived from dual p–n junctions, were successfully fabricated and further applied to photoelectrocatalysis. In this ternary nanocomposite, fast generation, separation, and transfer of charge carriers were achieved in the Cu2O/ZnO and Cu2O/CdS dual p–n junction regions due to their built-in electric field and appropriate band structures. Moreover, both highly ordered ZnO NRAs and compact CdS shell play the role of an electron collector and a transport channel that efficiently consumes the photoinduced electrons in the conduction band of Cu2O, which considerably reduces the recombination rate of charge carriers. As expected, the perfect cooperation of the three participators leads to the highest photoconversion efficiency of 2.61% at −0.275 V (versus saturated calomel electrode) and an incident photon-to-current conversion efficiency of 14.51% at 380 nm as well as the photoelectrocatalytic degradation ability of the optimized 30 min CdS/Cu2O/ZnO NRAs photoanode as compared to that of the Cu2O/ZnO and ZnO NRAs photoanodes. It is believed that the induced synergistic effect between dual p–n junctions and ZnO NRAs caused the superior performances of the CdS/Cu2O/ZnO NRAs photoanode, and this ternary material with a unique structure may present a new way of thinking for potential applications in the photoelectrochemistry field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.