Abstract

To mitigate antibiotic residues in the water environment, Bi2Sn2O7/g-C3N4 (BSCN) heterojunction was fabricated by a facile ultrasound-assisted hydrothermal method. The microstructure, morphology, and optical properties of Bi2Sn2O7/g-C3N4 heterojunction was studied by XRD, FTIR, XPS, SEM, TEM, UV–Vis DRS, and PL. The degradation rate of 20 mg/L norfloxacin (NOR) under visible light for 3 h was adopted as one of the indexes to evaluate the photocatalytic performance of Bi2Sn2O7/g-C3N4 heterojunction. Embellished with 20% Bi2Sn2O7 (BSO), the Bi2Sn2O7/g-C3N4 heterojunction decomposed 94% NOR in the experimental solution, which was 2.35 and 3.03 times as much as pristine g-C3N4 and bare Bi2Sn2O7, respectively. In addition, the Bi2Sn2O7/g-C3N4 heterojunction still eliminated 89% of NOR after five cycles, portending outstanding stability and cyclability of photocatalytic activity. A possible photocatalytic mechanism of Bi2Sn2O7/g-C3N4 heterojunction for NOR degradation is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call