Abstract
Abstract A novel ternary Au NPs/g-C3N4/BiOBr Z-scheme heterojunction composite was fabricated through hydrothermal and in-situ reduction method, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy and photoluminescence emission spectroscopy. The photocatalytic activity was evaluated by the degradation of phenol under visible-light irradiation. It was found that Au NPs/g-C3N4/BiOBr showed enhanced photocatalytic activity, which is 3-fold higher than g-C3N4 and 2.5-fold higher than BiOBr. This could be attributed to the effective separation of photogenerated electron-hole pairs, narrowed band gap (2.10 eV) and surface plasmon resonance (SPR).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.