Abstract

This paper reports on a simple and effective method for improving the electrochemical performance of silicon nanoparticle-core/carbon-shell (Si-core/C-shell) nanofibers. Instead of increasing the encapsulation amount of Si nanoparticles, additional conductive paths between the Si nanoparticles were formed by incorporating a small percentage of multi-walled carbon nanotubes (MWNTs) (e.g., 5 wt% with respect to Si) into the Si nanoparticle core. The electrical conductivity of a single Si-core/C-shell nanofiber was measured by a four-point probe using four nano-manipulators, which showed a more than five times increase according to MWNT addition. A galvanostatic charge-discharge test demonstrated that a small amount of MWNTs greatly improved the electrochemical performance of the Si-core/C-shell nanofibers (e.g., a 25.1% increase in the Li-ion storage capability) due to the enhanced participation of Si through the additional conductive paths formed between the Si nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call