Abstract

The successive ionic layer adsorption and reaction (SILAR) technique was adapted to produce the interconnected complex network of BaO:MgO nanorods on a flexible stainless-steel (SS) substrate surface. The phase and surface morphology of the BaO:MgO electrode were examined from the X-ray diffraction and scanning electron microscopy measurements, respectively, which endowed electrochemical specific capacitance (SC) of 528.77 F/g at a 2 mV/s scan rate with great rate capability and cycling performance of 94.33 % over 5000 cyclic voltammetry cycles. Fabricated BaO:MgO//AC asymmetric solid-state supercapacitor device, using polyvinyl alcohol and potassium hydroxide gel as an electrolyte, demonstrated distinctive energy storage performance, i.e., a specific capacitance (SC) of 259.07 F/g with an energy density of 57.27 Wh/kg and a power density of 2.34 kW/kg at a current density of 4 mA/cm2. The results demonstrated the facile method for synthesizing a spherical nanorod network of BaO:MgO and made them promising electrode materials for energy storage applications. The use of a solid-state supercapacitor device to illuminate an LED demonstrated the commercial feasibility of both the materials utilized and the design type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.