Abstract

A copolymer of TEMPO- and aniline-substituted norbornene was prepared by ring-opening metathesis polymerization of the corresponding monomers. Electropolymerization of the pendant aniline groups in the copolymer gave a layer of polynorbornene populated with the redox-active TEMPO pendants, in which polyaniline chain was incorporated. Electroactivity of the TEMPO pendants throughout the layer and its excellent charging/discharging cyclability, in addition to the amorphous nature of the layer, suggested that the polyaniline chain was homogeneously dispersed in the layer and that each chain served as crosslinking moiety. The effect of the polyaniline chains was further enhanced when they were formed by in-situ electropolymerization of the aniline group in the preformed layer of the copolymer/polyaniline composite. The polyaniline chain served as a conducting path to reduce the charge-transfer resistance for redox mediation, which gave rise to an excellent rate performance for the charging/discharging process of the layer, compared with those for the composite layers of TEMPO-substituted polymers with polyaniline and other conductive additives prepared by the conventional grinding methods. Electropolymerization of pendant groups in a copolymer of TEMPO- and aniline-substituted norbornene gave a layer of TEMPO-populated polynorbornene in which polyaniline chains were incorporated. The polyaniline chain served as a conducting path to reduce charge-transfer resistance for redox mediation, which gave rise to an excellent rate performance for charging/discharging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.