Abstract

Ternary NiCo2O4 has paying more attention as a class of potential electrochemical energy storage materials. In the present endeavor, we report spinel NiCo2O4 nanoplates, which were prepared by cetyl trimethyl ammonium bromide (CTAB)-assisted hydrothermal technique followed by proper calcination process. The structural and morphological features were characterized by x-ray diffraction, Fourier transform infrared spectra, scanning electron microscope and high-resolution transmission electron microscopic analyses. The supercapacitive properties of the materials were evaluated using cyclic voltammetric, electrochemical impedance spectroscopy and galvanostatic charge/discharge analysis in 1 M NaOH electrolyte. The freshly prepared NiCo2O4 materials offer the specific capacitance of 329 mA h g−1 at a current density of 1 A g−1, and it provides superior long-term cyclic stability, which retained 97% of initial capacitance after 2000 continuous CV cycles at a high scan rate of 100 mV s−1. These outcomes demonstrate thus prepared spinel NiCo2O4 as a significant electrode material for supercapacitor application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.