Abstract

Adhesive hydrogels, playing an essential role in stretchable electronics, soft robotics, tissue engineering, and so forth, upon functioning often need to adhere to various substrates in wet conditions and simultaneously exhibit antibacterial/antioxidant properties while possessing the intrinsic stretchability and elasticity of the hydrogel network intact. Therefore, simple approaches to conveniently access adhesive hydrogels with multifunctional surfaces are being pursued. Herein, a facile strategy has been proposed to construct multifunctional adhesive hydrogels via surface engineering of a multifunctional carbon dot (CD)-decorated polymeric thin layer by dynamic bond exchange. By this strategy, a double cross-linked network hydrogel of polyacrylamide (PAM) and oxidized dextran (ODA) was engineered with a unique dense layer over the Schiff base hydrogel matrix by aqueous solution immersion of PA-120, versatile CDs derived from tannic acid (TA) and ε-polylysine (PL). Without any additional agents, the PA-120 CDs with residual polyphenolic/catechol and amine moieties were incorporated into the surface structure of the hydrogel network by the combined action of the Schiff base and hydrogen bonds to form a dense surface layer that can exhibit high wet adhesive performance via the amine-polyphenol/catechol pair. The armor-like dense architecture also endowed hydrogels with considerably enhanced tensile/compression properties and excellent antioxidant/antibacterial abilities. Besides, the single-sided modified Janus hydrogel and completely surface-modified hydrogel can be flexibly developed through this approach. This strategy will provide new insights into the preparation and application of surface-modified hydrogels featuring multiple functions and tunable interfacial properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call