Abstract

Developing non-noble metal-based electrocatalysts with cost-effective materials for water splitting is critical to clean energy generation and storage. However, the process of water splitting is greatly hindered by the oxygen evolution reaction (OER), which is kinetically sluggish and requires large overpotentials. Herein, we report an active and stable OER catalyst by electrodeposition of ultrathin Ni(OH)2 nanosheets on three-dimensional interwoven nitrogen-doped carbon nanotubes (N-CNTs). The Ni(OH)2 nanosheets grown on the N-CNTs afforded a current density of 10 mA cm−2 at the overpotential of only 254 mV, smaller than the commercial IrO2 catalyst. Moreover, the as-prepared catalyst shows long-term durability almost without degradation over 100 h. The excellent OER activity can be ascribed to the unique layered structure of Ni(OH)2, the ultrathin and interconnected features of the nanosheets, and the three-dimensional (3D) porous conducting network of the N-CNTs. The rational design strategy can be extended to the preparation of other non-precious metal catalysts with enhanced OER performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.