Abstract

Solution processed thin films of an amphiphilic tris(phthalocyaninato) rare earth triple-decker complex, Eu(2)[Pc(15C5)(4)](2)[Pc(OC(10)H(21))(8)], have been prepared from three different methods: self-assembly (SA) annealed in solvent vapor, quasi-Langmuir-Shäfer (QLS) and drop casting methods. In particular, we successfully developed a simple QLS process for fabricating ordered multilayers with a good thickness control. The films prepared from three different methods were characterized by a wide range of methods including electronic absorption spectra, IR, X-ray diffraction, atomic force microscopy (AFM), and current-voltage (I-V) measurements. J-type aggregates have been formed with the increasing degree of order of molecular stacking Cast < QLS < SA films. Moreover, the gas sensing behavior of the three types of films was investigated towards ozone in the 8-300 ppb range. Unexpectedly good sensitive, stable and reproducible responses to O(3) gas are obtained for these kinds of ultra-thin solution processed films in a fast response/recovery cycle of only 1/4 min. The response of Eu(2)[Pc(15C5)(4)](2)[Pc(OC(10)H(21))(8)] films is linearly correlated to the ozone concentration. The interaction between the Eu(2)[Pc(15C5)(4)](2)[Pc(OC(10)H(21))(8)] films and different ozone concentrations was found to follow first-order kinetics. Strikingly, QLS films showed the most stable response and the largest average sensor response rate constant among the three types of films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.