Abstract

Stretchable electronics are poised to revolutionize personal healthcare and robotics, where they enable distributed and conformal sensors. Transistors are fundamental building blocks of electronics, and there is a need to produce stretchable transistors using low-cost and scalable fabrication techniques. Here, we introduce a facile fabrication approach using laser patterning and transfer printing to achieve high-performance, solution-processed intrinsically stretchable organic thin-film transistors (OTFTs). The device consists of Ag nanowire (NW) electrodes, where the source and drain electrodes are patterned using laser ablation. The Ag NWs are then partially embedded in a poly(dimethylsiloxane) (PDMS) matrix. The electrodes are combined with a PDMS dielectric and polymer semiconductor, where the layers are individually transfer printed to complete the OTFT. Two polymer semiconductors, DPP-DTT and DPP-4T, are considered and show stable operation under the cyclic strain of 20 and 40%, respectively. The OTFTs maintain electrical performance by adopting a buckled structure after the first stretch-release cycle. The conformability and stretchability of the OTFT is also demonstrated by operating the transistor while adhered to a finger being flexed. The ability to pattern highly conductive Ag NW networks using laser ablation to pattern electrodes as well as interconnects provides a simple strategy to produce complex stretchable OTFT-based circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.