Abstract

Conductive polymers have been intensively investigated as materials for electrodes in flexible electronics due to their favorable biocompatibility and reliable electrochemical stability. Nevertheless, patterning of conductive polymers for the fabrication of devices and in various electronics applications confronts multifarious limitations and challenges. Here, we present a simple but efficient strategy to obtain conductive polymer microelectrodes via utilization of surface-tension-confined liquid patterns. This method shows universality for various oxidizers and conductive polymers, high resolution, stability, and favorable compatibility with different surfaces and materials. The developed method has been demonstrated for creating conductive polymer microelectrodes with a customized reaction process, defined geometry, and flexible substrates. The obtained microelectrodes were assembled into flexible capacitive sensors. Thus, the method realizes a facile approach to conductive polymer microelectrodes for flexible electronics, biomedical applications, human activity monitors, and electronic skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.