Abstract

AbstractA rhodium‐based multicomponent catalytic system for well‐controlled living polymerization of phenylacetylenes has been developed. The catalytic system is composed of readily available and bench‐stable [Rh(nbd)Cl]2, aryl boronic acid derivatives, diphenylacetylene, 50 % aqueous KOH, and PPh3. This system offers a method for the facile and versatile synthesis of various end‐functionalized cis‐stereoregular poly(phenylacetylene)s because components from aryl boronic acids and diphenylacetylene were introduced to the initiating end of the polymers. The polymerization reaction shows a typical living nature with a high initiation efficiency, and the molecular weight of the resulting poly(phenylacetylene)s can be readily controlled with very narrow molecular‐weight distributions (Mw/Mn=1.02–1.09). The experimental results suggest that the present catalytic system has a higher polymerization activity than the polymerization activities of other rhodium‐based catalytic systems previously reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call