Abstract

Reducing early nonbacterial inflammation induced by implanted materials and infection resulting from bacterial contamination around the implant-abutment interface could greatly decrease implant failure rates, which would be of clinical significance. In this work, we presented a facile and versatile strategy for the construction of anti-inflammatory and antibacterial surfaces. Briefly, the surfaces of polystyrene culture plates were first coated with polydopamine and then decorated with dexamethasone plus minocycline-loaded liposomes (Dex/Mino liposomes), which was validated by contact angle goniometry, quartz crystal microbalance, and fluorescence microscopy. Dex/Mino liposomes were dispersed on functional surfaces and the drug release kinetics exhibited the sustained release of dexamethasone and minocycline. Our results demonstrated that the Dex/Mino liposome-modified surfaces had good biocompatibility. Additionally, liposomal dexamethasone reduced proinflammatory mediator expression (particularly IL-6 and TNF-α) in lipopolysaccharide-stimulated human gingival fibroblasts and human mesenchymal stem cells. Moreover, liposomal minocycline prevented the adhesion and proliferation of Porphyromonas gingivalis (Gram-negative bacteria) and Streptococcus mutans (Gram-positive bacteria). These findings demonstrate that an anti-inflammatory and antibacterial surface was developed, using dopamine as a medium and combining a liposomal delivery device, which has potential for use to reduce implant failure rates. Accordingly, the surface modification strategy presented could be useful in biofunctionalization of implant materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call