Abstract

Efficient uranium capture from wastewater holds great importance for the environmental remediation and sustainable development of nuclear energy, but it is a tremendous challenge. Herein, a facile and scalable approach is reported to fabricate functionalized hierarchical porous polymers (PPN-3) decorated with high density of phosphate groups for uranium adsorption. The as-constructed hierarchical porous structure could allow rapid diffusion of uranyl ions, while abundant phosphate groups that serve as adsorption sites could provide the high affinity for uranyl. Consequently, PPN-3 shows a high uranium adsorption uptake of 923.06 mg g−1 and reaches adsorption equilibrium within simply 10 min in uranium-spiked aqueous solution. Moreover, PPN-3 affords selective adsorption of uranyl over multiple metal ions and possesses a rapid and high removal rate of U(VI) in real water systems. Furthermore, this study offers direct polymerization strategy for the cost-effective fabrication of phosphate-functionalized porous organic polymers, which may provide promising application potential for uranium extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.