Abstract

A porous silicon and carbon composite (PSi/C) with granadilla-like structure as an anode material for lithium-ion batteries has been easily fabricated by spray drying and subsequent pyrolysis treatments. For the PSi/C, yolk-shell-structured Si/C nanobeads are equably distributed inside the porous carbon framework. The key point of this work is the combination of the advantages of both the yolk-shell structure and porous structure in one system. The void space inside the yolk-shell Si/C nanobeads and the interconnected three-dimensional porous carbon frameworks can effectively enhance the cyclic stability and conductivity of this composite. As expected, PSi/C with 15.4% silicon content exhibited a specific capacity as high as 1357.43 mAh g-1 and retained 933.62 mAh g-1 beyond 100 cycles at 100 mA g-1. Moreover, it showed a reversible specific capacity as high as 610.38 mAh g-1 at 1000 mA g-1, even after 3000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.