Abstract

Metal-organic frameworks (MOFs) are promising hosts for catalytic active sites due to their adjustable porosity and framework chemistry. Strategies to improve synergistic effects between the installed sites and the parent MOF are highly desired. Herein, a facile and rapid method for the preparation of xAg@ZIF-8 materials was reported. The materials were systematically characterized and used as catalysts for carboxylation of terminal alkynes via direct insertion of CO2 to the C(sp)-H bond (CTACO2). It was found that the integrity of the ZIF-8 structure could be retained upon Ag loading, but short-range crystalline ordering was modified. Two types Ag species could be installed, namely, highly dispersed Ag(I) in the backbone (AgHD) and aggregated Ag(0) nanoparticles on the outer surface (AgNP). The AgNP sites are highly effective for the activation of terminal alkynes due to its high accessibility, while the AgHD-modified ZIF-8 framework worked as a CO2 reservoir with enhanced affinity. Combination of these factors translated to high activity in the CTACO2 process, the measured turnover frequency and time yield are among the highest among most heterogeneous catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.