Abstract

The emerging carbon-based quantum dots have been attracting attention because of their tremendous potential for optoelectronic and biomedical applications, which is due to their unique and size-tunable optical properties, their ability to be functionalized, and their biocompatibility. Here, we report the facile one-step synthesis of highly fluorescent and amphiphilic n-doped graphitic carbon dots (N-GCDs) using a fumaronitrile (FN) precursor. An interesting property of the prepared GCDs is their near pH neutral dispersibility without refinement, which stands in contrast to reported methods. This finding indicates that our approach could lead to low-cost and efficient processability that is scalable and environmentally friendly. In addition, we find that our N-GCDs have high density of graphitic structure such as sp2-hybridized carbon and tiny amounts of defect by near-edge X-ray absorption fine structure (NEXAFS) results. Finally, to confirm the electro-optical behavior of N-GCDs on photovoltaic devices, ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.