Abstract

In the pursuit of energy efficient materials, vanadium dioxide (VO2) based smart coatings have gained much attention in recent years. For smart window applications, VO2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr2O3/VO2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr2O3 layer not only provides a structural template for the growth of VO2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr2O3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO2 coating. According to optical measurements, the Cr2O3/VO2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔTsol = 12.2%) and a high luminous transmittance (Tlum,lt = 46.0%), which makes a good balance between ΔTsol and Tlum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr2O3/VO2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr2O3/VO2 coating glass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.