Abstract

The transparent flexible supercapacitor is considered to be the key energy-storage component for the development of wearable and fully transparent electronic devices. However, the current transparent supercapacitor faces the low-haze challenge, which is essential for the high-definition visualization in transparent electronics. Herein, we developed a facile interfacial polymerization approach for the large-area preparation of flexible polypyrrole/polyethylene terephthalate (PPy/PET) transparent conductive films in a cost-effective way. The PPy/PET film exhibits a highly uniform morphology and a low haze level of 1.40% (corresponding to high definition) as well as negligible resistance changing under an ultrasmall bending radius. The sandwich-structured, large-area, transparent supercapacitor assembled based on the PPy/PET films also keeps a similar low haze level. A facile N, N-dimethylformamide etchant-written strategy on the PPy/PET film is developed to fabricate the patterned micro-supercapacitors (MSCs) in series in scalable area, which show a low haze level of 1.66% and a high transparency of 70.2%. Significantly, the low-haze MSC possesses high energy-storage capacity and presents almost no capacitance loss at an extreme bending state. This work demonstrates a facile preparation of large-area and low-haze transparent flexible supercapacitors and also enlightens broad interests in their potential integrity toward the fully transparent wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.