Abstract

Porous copper (Cu) films were facilely and greenly fabricated by low-current electrical field-induced assembly of ~ 3 nm Cu nanoparticles (NPs) in several minutes using generated hydrogen bubbles as dynamic negative templates. The porous films had open three-dimensionally (3D) interconnected nanopores and uniform pore size distribution and exhibited a hierarchical structure composed of supraparticles that were further composed of the Cu NPs. Lattice-to-lattice connectivity in the self-assembly of the NPs in the 3D structures enables fast charge transport. The structure/morphology of the porous Cu materials can be tuned by adjusting the concentration of the additives, applied potential/current densities and assembly time. A growth mechanism of the porous films was reasonably proposed for the field-induced assembly of the Cu NPs. The porous Cu film-supported Si electrode showed high capacity of 1173 mAh g−1 and retention rate of 87% after 10 cycles at 1 C. Our research sheds a light on preparing 3D nanoporous structures especially for suitable electrodes in electrochemical energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.