Abstract
There is growing interest in the development of nucleic acid nanostructures as smart functional materials for applications in drug delivery. Inspired by the diverse physical interactions that exist in nature, crosslinked DNA nanostructures can serve as attractive affinity binding networks that interact with therapeutic cargos or living cells. Herein we report a strategy that addresses the challenges of topical oligopeptide therapy by exploiting high binding affinity between polyanionic DNA nanostructures and cationic antimicrobial peptides (AMPs) to fabricate hydrogels that release a model antimicrobial L12 peptide in response to pathogenic S. aureus infections. We further demonstrated controlled peptide release profiles via the DNA hydrogels that were biocompatible and delivered superior antimicrobial activity against nuclease-releasing susceptible and methicillin-resistant S. aureus infections. Single application of the L12-loaded DNA hydrogels on porcine explant S. aureus infections revealed potent efficacy after 24h. As a result of the capacity of the crosslinked DNA nanostructures to elicit a strong anti-inflammatory response, in vivo treatment of mice excision wounds translated into faster healing rates. Overall, the crosslinked DNA nanostructures reported in this study offer significant advantage as functional wound dressings and their future adaptation holds equally great promise for the delivery of cationic antimicrobials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.