Abstract

We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call