Abstract

The phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(mu-PCy(2)){kappa(2)P,O-mu-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) reversibly adds H(2) under ambient conditions, giving cis-[(H)(PHCy(2))Pt(1)(mu-PCy(2))(mu-H)Pt(2)(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (2). Complex 2 slowly isomerizes spontaneously into the corresponding more stable isomer trans-[(PHCy(2))(H)Pt(mu-PCy(2))(mu-H)Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (3). DFT calculations indicate that the reaction of 1 with H(2) occurs through an initial heterolytic splitting of the H(2) molecule assisted by the phosphinito oxygen with breaking of the Pt-O bond and hydrogenation of the Pt and O atoms, leading to the formation of the intermediate [(PHCy(2))(H)Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(OH)Cy(2)}](Pt-Pt) (D), where the two split hydrogen atoms interact within a six-membered Pt-H...H-O-P-Pt ring. Compound D is a labile intermediate which easily evolves into the final dihydride complex 2 through a facile (9-15 kcal mol(-1), depending on the solvent) hydrogen shift from the phosphinito oxygen to the Pt-Pt bond. Information obtained by addition of para-H(2) on 1 are in agreement with the presence of a heterolytic pathway in the 1 --> 2 transformation. NMR experiments and DFT calculations also gave evidence for the nonclassical dihydrogen complex [(PHCy(2))(eta(2)-H(2))Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (4), which is an intermediate in the dehydrogenation of 2 to 1 and is also involved in intramolecular and intermolecular exchange processes. Experimental and DFT studies showed that the isomerization 2 --> 3 occurs via an intramolecular mechanism essentially consisting of the opening of the Pt-Pt bond and of the hydrogen bridge followed by the rotation of the coordination plane of the Pt center with the terminal hydride ligand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call