Abstract

We describe a family of cationic methylstannylene and chloro- and azidosilylene organoplatinum(II) complexes supported by a neutral, binucleating ligand. Methylstannylenes MeSn:+ are stabilized by coordination to PtII and are formed by facile Me group transfer from dimethyl or monomethyl PtII complexes, in the latter case triggered by concomitant B-H, Si-H, and H2 bond activation that involves hydride transfer from Sn to Pt. A cationic chlorosilylene complex was obtained by formal HCl elimination and Cl- removal from HSiCl3 under ambient conditions. The computational studies show that stabilization of cationic methylstannylenes and cationic silylenes is achieved through weak coordination to a neutral N-donor ligand binding pocket. The analysis of the electronic potentials, as well as the Laplacian of electron density, also reveals the differences in the character of Pt-Si vs. Pt-Sn bonding. We demonstrate the importance of a ligand-supported binuclear Pt/tetrel core and weak coordination to facilitate access to tetrylium-ylidene Pt complexes, and a transmetalation approach to the synthesis of MeSnII :+ derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call