Abstract

Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.

Highlights

  • Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance

  • The inefficient transport of peptide nucleic acid (PNA) across cell membranes, as well as the lack of a systematic effort to target non-traditional antibiotic pathways, has limited the development of PNA as useful antibiotics. We address these limitations through the introduction of Facile Accelerated Specific Therapeutic (FAST)[27], a semi-automated platform for the quick and efficient design, synthesis, testing, and delivery of PNA

  • Get Sequences is used to create a library of PNA candidate sequences that target the mRNA translation start codons of a user-defined set of genes

Read more

Summary

Introduction

Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. Testing required an additional 24-h experiment and validated the predicted toxicity of PNA against their essential gene targets in E. coli reference strain MG1655 (Fig. 2b, S4, & S5).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.