Abstract

Three-dimensional (3D) integration is a promising strategy to integrate more functions into a given footprint. In this work, we report on a convenient new strategy to grow and integrate high density Si nanowire (SiNW) arrays on the parallel sidewall grooves formed by Bosch etching, via a low temperature (<350 °C) in-plane solid-liquid-solid (IPSLS) mechanism. It is observed that both the pitch and the depth of the grooves can be reliably controlled, by tuning the Bosch etching parameters, to adjust the density of SiNWs, and the sidewall growth of SiNWs is rather stable even along the turnings. This approach has demonstrated a facile batch-manufacturing of stacked SiNWs, where the SiNWs exhibit a mean diameter of 40 nm and a spacing of 100 nm, without the use of any high resolution lithography. Prototype stacked channel transistors are also fabricated, with an impressive on/off current of >107 and a hole mobility of 57 cm2 V-1 s-1, in a unique vertical side-gate configuration. These results highlight the unique potential and benefit of combining conventional Bosch processing with high precision 3D guided growth of SiNWs for constructing more complex and functional stacked channel electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.