Abstract

The Kaiparowits Formation is an unusually thick package of Upper Cretaceous (late Campanian) strata exposed in Grand Staircase-Escalante National Monument of southern Utah, USA. The formation was deposited within the rapidly subsiding Cordilleran foreland basin as part of a thick clastic wedge derived from sources in the Sevier orogenic belt, thrust sheets in southeastern Nevada and southern California, and the Mogollon slope in southwestern Arizona. Channel systems in the Kaiparowits Formation shifted from northeastward to southeastward flow over time, and for a short period of time, sea level rise in the Western Interior Seaway resulted in tidally influenced rivers and/or estuarine systems. Thick floodbasin pond deposits, large suspended-load channels, and poorly developed, hydromorphic paleosols dominate the sedimentary record, and all are suggestive of a relatively wet, subhumid alluvial system. This is supported by extremely rapid sediment accumulation rates (41 cm/ka), and high diversity and abundance of aquatic vertebrate and invertebrate fossils. Facies and architectural analysis was performed on the Kaiparowits Formation, resulting in the identification of nine distinct facies associations: 1) intraformational conglomerate, 2) mollusc-shell conglomerate, 3) major tabular sandstone, 4) major lenticular sandstone, 5) minor tabular and lenticular sandstone, 6) finely laminated, calcareous siltstone, 7) inclined heterolithic sandstone and mudstone, 8) sandy mudstone, and 9) carbonaceous mudstone. These facies associations are interpreted as: 1) channel lags, 2) rare channel-hosted storm beds, 3) meandering channels, 4) anastomosing channels, 5) crevasse splays and crevasse channels, 6) lakes, 7) tidally influenced fluvial and/or estuarine channels, 8) mud-dominated floodplains, and 9) swamps and oxbow lakes. Based on this analysis, the formation is subdivided into three informal units, representative of gross changes in alluvial architecture, including facies stacking patterns, sandstone/mudstone ratios, and interpreted channel morphology. Alluvial architecture and stacking patterns in the Kaiparowits Formation were controlled by a combination of allogenic controls, most significantly tectonics followed by climate and eustasy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call