Abstract
Subsurface sedimentary strata in northern Switzerland, such as the Middle Triassic Upper Muschelkalk, are attracting interest as potential reservoirs for CO2 sequestration and for geothermal energy production. Characterizing facies in such strata aids prediction of reservoir properties in unexplored areas. Although well studied elsewhere, the Swiss Upper Muschelkalk has received little attention despite containing the southern-most deposits of the Central European Basin. The Upper Muschelkalk represents the deposits of a storm-dominated, homoclinal carbonate ramp, developed during a basin-wide 3rd-order transgressive–regressive cycle. Our facies analyses of nine boreholes across northern Switzerland reveal 12 lithofacies, eight lithofacies associations and four types of metre-scale 5th-order cycles corresponding to at least 23 short orbital eccentricity cycles. During the 3rd-order transgression, crinoidal bioherms developed across Switzerland followed by deep-ramp environments. Subsequently, tempestites were deposited up to and after the basin-wide maximum flooding surface. Lateral tempestite correlations indicate that Switzerland lay within an open-marine, mid-ramp environment during almost half of the depositional history. Mid-ramp deposits pass upwards to prograding shelly shoals, which sheltered a back-shoal lagoon containing patchy oolitic shoals. At the top of the Upper Muschelkalk, back-shoal sediments give way to coastal sabkha facies, which were overlain by oolitic shoals during a marine transgression. Shortly thereafter the top of the Upper Muschelkalk was dolomitized by brines from an overlying hypersaline environment that was later removed by a basin-wide erosive event. Overall, the paucity of porous shoal facies, unlike in southern Germany, has resulted in poor primary reservoir properties in the Upper Muschelkalk of Switzerland.
Highlights
Carbonate sedimentary rocks commonly offer potential as aquifers for groundwater and as reservoirs for hydrocarbons, gas-storage and geothermal energy
Facies and lithofacies associations (LFA) described below are similar to the nearshore, backshoal, shoal, foreshoal and bioclastic tempestite facies and LFA identified in previous studies of the Upper Muschelkalk of south-western Germany (Alesi 1984; Aigner 1985; Braun 2003; Koehrer et al 2010; Palermo et al 2010; Warnecke and Aigner 2019b)
Crinoid packstones at the base of the association are unique to this LFA and are interpreted as lagoon-sheltering crinoidal bioherms that developed during the regressive hemicycle of the Upper Muschelkalk (Aigner 1985)
Summary
Carbonate sedimentary rocks commonly offer potential as aquifers for groundwater and as reservoirs for hydrocarbons, gas-storage and geothermal energy. The reservoir properties of the Upper Muschelkalk of Germany are predictable and have been well studied (Braun 2003; Ruf and Aigner 2004; Koehrer et al 2010; Palermo et al 2010), the reservoir properties of the Upper Muschelkalk of Switzerland are spatially heterogeneous (Chevalier et al 2010) This is in part due to its complex early diagenetic history (Adams and Diamond 2017), to the dolomitization of the Upper Muschelkalk (Adams et al 2019) and to the burial history of the unit (Aschwanden et al 2019). The goals are to describe the lithofacies and lithofacies associations of the Swiss Upper Muschelkalk, to investigate its sequence stratigraphic framework, to reconstruct the ramp evolution and to compare the results with existing studies of the Upper Muschelkalk of southern Germany
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.