Abstract

Developing high-performance biocathodes remain one of the most challenging aspects of the microbial electrosynthesis (MES) system and the primary factor limiting its output. Herein, a hollow porous carbon (PC) fabricated with MXenes coated over an electrode was developed for MES systems to facilitate the direct delivery of CO2 to microorganisms colonized. The result highlighted that MXene@PC (Ti3C2Tx@PC) has a surface area of 434 m2/g. The Ti3C2Tx@PC MES cycle shows that in cycle 4 and cycle 5, the values are -309.2 and -352.3. Cyclic voltammetry showed that the coated electrode current response (mA) increased from -4.5 to -20.2. The substantial redox peaks of Ti3C2Tx@PC biofilms are displayed at -741, -516, and -427 mV vs Ag/AgCl, suggesting an enhanced electron transfer owing to the Ti3C2Tx@PC complex coating. Additionally, more active sites enhanced mass transfer and microbial development, resulting in a 46% rise in butyrate compared to the uncoated control. These findings demonstrate the value of PC modification as a method for MES-based product selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.