Abstract
AbstractIn this paper we study the abstract convex programwhere S is an arbitrary convex cone in a finite dimensional space, Ω is a convex set and p and g are respectively convex and S (on Ω). We use the concept of a minimal cone for (P) to correct and strengthen a previous characterization of optimality for (P), see Theorem 3.2. The results presented here are used in a sequel to provide a Lagrange multiplier theorem for (P) which holds without any constraint qualification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.