Abstract
Face recognition provides broad access to several public devices, so it is essential in the midst of today's technology boom. Human face recognizing has challenge in using uncomplicated and straightforward algorithms quickly, using memory specifications are not too high, otherwise the results are quality and accurate. Face recognition using combination edge detection and Canberra distance can be recommended for applications that require fast and precise access. The application of several edge detections singly has low performance, so it requires a combination technique to obtain better results. The proposed method combined several edge detections such are Robert, Prewitt, Sobel, and Canny to recognize a face image by identification and verification. As a feature extractor, the combination edge detection forms a more robust and more specific facial pattern on the contour lines. The results show that the combination accuracy outperforms other extractor features significantly. Canberra distance produces the best performance compared to Euclidean distance and Mahalanobis distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.