Abstract

The modern human face differs from that of our early ancestors in that the facial profile is relatively retracted (orthognathic). This change in facial profile is associated with a characteristic spatial distribution of bone deposition and resorption: growth remodeling. For humans, surface resorption commonly dominates on anteriorly-facing areas of the subnasal region of the maxilla and mandible during development. We mapped the distribution of facial growth remodeling activities on the 900–800 ky maxilla ATD6-69 assigned to H. antecessor, and on the 1.5 My cranium KNM-WT 15000, part of an associated skeleton assigned to African H. erectus. We show that, as in H. sapiens, H. antecessor shows bone resorption over most of the subnasal region. This pattern contrasts with that seen in KNM-WT 15000 where evidence of bone deposition, not resorption, was identified. KNM-WT 15000 is similar to Australopithecus and the extant African apes in this localized area of bone deposition. These new data point to diversity of patterns of facial growth in fossil Homo. The similarities in facial growth in H. antecessor and H. sapiens suggest that one key developmental change responsible for the characteristic facial morphology of modern humans can be traced back at least to H. antecessor.

Highlights

  • The region of the modern human mid-face including the area below the nose is retracted relative to the upper face when compared with living and fossil hominoids and hominins

  • It should be noted that KNM-WT 15000 was originally attributed to H. erectus some authors have proposed the use of the name H. ergaster for the early African H. erectus sample given the differences in morphology between early and late Homo erectus, those from East Asia [23]

  • Others suggest that the observed variation between the African and Asian demes can be accommodated within a single species and that no significant differences can be credited to geographic variation [24]

Read more

Summary

Introduction

The region of the modern human mid-face including the area below the nose is retracted relative to the upper face when compared with living and fossil hominoids and hominins. This condition, referred to as orthognathy, is one of the defining or autapomorphic features of modern humans [1]. Bone resorption and bone deposition are important cell-mediated mechanisms that, in addition to displacement, contribute to the balanced growth and spatial distribution of the various facial bones [2,3,4,5]. The activity of the different types of cells involved in bone deposition (osteoblasts) or bone resorption (osteoclasts) creates characteristically different surface features on both the outer, periosteal, and internal, endosteal, bone surfaces.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.