Abstract

Recognizing microexpression serves as a vital clue for affective estimation. Fast and discriminative feature extraction has always been a critical issue for spontaneous microexpression recognition applications. A microexpression analysis framework is proposed by adaptively key frame extraction and representation. First, to remove redundant information in the microexpression video sequences, the key frame is adaptively selected on the criteria of structural similarity index between different face images, Second, robust principal component analysis is applied to obtain the sparse information in the key frame, which not only retains the expression attributes of the microexpression sequence, but also eliminates useless interference. Furthermore, we construct dual-cross patterns to get the final microexpressions representation for classification. Repeated comparison experiments were performed on the SMIC and CASME2 databases to evaluate the performance of the proposed method. Experimental results demonstrate that our proposed method gets higher recognition rates and achieves promising performance, compared with the traditional microexpression recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.