Abstract

Facial image based human age estimation is of great application significance. The public-available facial image datasets used for age estimation suffer greatly from the uneven distribution of images of different age groups, which may lead to the low estimation accuracy of the under-sampled age categories and limit the usage of the age estimation in certain applications. We propose a three-stage probability adjustment based CNN algorithm to solve the imbalanced distribution problem of the dataset. In particular, we construct an ENIN neural network structure by applying the Network in Network (NIN) structure to the traditional convolution neural network (CNN) and use the probability vector adjustment to improve the classification accuracy of the under-sampled age categories. Then, we filter out the images with high possibility of being misclassified after the probability vector adjustment and reset their categories by comparing cosine similarity and retraining the ensembled ENIN classifier. We also introduce a population-age-distribution based accuracy metric Accuracy-P to estimate the performance of the age estimation algorithm in real-world applications. Our experimental results confirm that our algorithm can effectively improve the overall estimation accuracy by significantly improving the accuracy of the under-sampled age groups while maintaining satisfactory accuracy for the other age groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.