Abstract

The aim in this paper is to show how to use the 2.5D facial surface normals (needle-maps) recovered using shape-from-shading (SFS) to perform gender classification. We use principal geodesic analysis (PGA) to model the distribution of facial surface normals which reside on a Remannian manifold. We incorporate PGA into shape-from-shading, and develop a principal geodesic shape-from-shading (PGSFS) method. This method guarantees that the recovered needle-maps exhibit realistic facial shape by satisfying a statistical model. Moreover, because the recovered facial needle-maps satisfy the data-closeness constraint as a hard constraint, they not only encode facial shape but also implicitly encode image intensity. Experiments explore the gender classification performance using the recovered facial needle-maps on two databases (Notre Dame and FERET), and compare the results with those obtained using intensity images. The results demonstrate the feasibility of gender classification using the recovered facial shape information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.