Abstract
In studying the joint object detection and classification problem for facial expression recognition (FER) deploying the YOLOX framework, we introduce a novel feature extractor, called neighborhood coordinate attention Mamba (NCAMamba) to substitute for the original feature extractor in the Feature Pyramid Network (FPN). NCAMamba combines the background information reduction capabilities of Mamba, the local neighborhood relationship understanding of neighborhood attention, and the directional relationship understanding of coordinate attention. The resulting FER-YOLO-NCAMamba model, when applied to two unaligned FER benchmark datasets, RAF-DB and SFEW, obtains significantly improved mean average precision (mAP) scores when compared with those obtained by other state-of-the-art methods. Moreover, in ablation studies, it is found that the NCA module is relatively more important than the Visual State Space (VSS), a version of using Mamba for image processing, and in visualization studies using the grad-CAM method, it reveals that regions around the nose tip are critical to recognizing the expression; if it is too large, it may lead to erroneous prediction, while a small focused region would lead to correct recognition; this may explain why FER of unaligned faces is such a challenging problem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.