Abstract
In our earlier work, we have proposed an HVF (Histogram Variance Face) approach and proved its effectiveness for facial expression recognition. In this paper, we extend the HVF approach and present a novel approach for facial expression. We take into account the human perspective and understanding of facial expressions. For the first time, we propose to use the Local Binary Pattern (LBP) defined on the hexagonal structure to extract local, dynamic facial features from facial expression images. The dynamic LBP features are used to construct a static image, namely Hexagonal Histogram Variance Face (HHVF), for the video representing a facial expression. We show that the HHVFs representing the same facial expression (e.g., surprise, happy and sadness etc.) are similar no matter if the performers and frame rates are different. Therefore, the proposed facial recognition approach can be utilised for the dynamic expression recognition. We have tested our approach on the well-known Cohn-Kanade AU-Coded Facial Expression database. We have found the improved accuracy of HHVF-based classification compared with the HVF-based approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.