Abstract

Recognition of facial expressions across various actors, contexts, and recording conditions in real-world videos involves identifying local facial movements. Hence, it is important to discover the formation of expressions from local representations captured from different parts of the face. So in this paper, we propose a dynamic kernel-based representation for facial expressions that assimilates facial movements captured using local spatio-temporal representations in a large universal Gaussian mixture model (uGMM). These dynamic kernels are used to preserve local similarities while handling global context changes for the same expression by utilizing the statistics of uGMM. We demonstrate the efficacy of dynamic kernel representation using three different dynamic kernels, namely, explicit mapping based, probability-based, and matching-based, on three standard facial expression datasets, namely, MMI, AFEW, and BP4D. Our evaluations show that probability-based kernels are the most discriminative among the dynamic kernels. However, in terms of computational complexity, intermediate matching kernels are more efficient as compared to the other two representations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.