Abstract
Facial expressions vary with different health conditions, making a facial expression recognition (FER) system valuable within a healthcare framework. Achieving accurate recognition of facial expressions is a considerable challenge due to the difficulty in capturing subtle features. This research introduced an ensemble neural random forest method that utilizes convolutional neural network (CNN) architecture for feature extraction and optimized random forest for classification. For feature extraction, four convolutional layers with different numbers of filters and kernel sizes are used. Further, the maxpooling, batch normalization, and dropout layers are used in the model to expedite the process of feature extraction and avoid the overfitting of the model. The extracted features are provided to the optimized random forest for classification, which is based on the number of trees, criterion, maximum tree depth, maximum terminal nodes, minimum sample split, and maximum features per tree, and applied to the classification process. To demonstrate the significance of the proposed model, we conducted a thorough assessment of the proposed neural random forest through an extensive experiment encompassing six publicly available datasets. The remarkable weighted average recognition rate of 97.3% achieved across these diverse datasets highlights the effectiveness of our approach in the context of FER systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.